If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+8X-98=0
a = 1; b = 8; c = -98;
Δ = b2-4ac
Δ = 82-4·1·(-98)
Δ = 456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{456}=\sqrt{4*114}=\sqrt{4}*\sqrt{114}=2\sqrt{114}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{114}}{2*1}=\frac{-8-2\sqrt{114}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{114}}{2*1}=\frac{-8+2\sqrt{114}}{2} $
| 20.2x+4=180 | | 7-6x=2x+3x-4 | | y+7=2y-52 | | x+16=20/x=4 | | w+1/2=6 | | k/3=4.5 | | -13=4(5x-11)-11x | | 60=30+.05x | | 4y+6+7y-21=180 | | 14n-7=63 | | 13=8n+14 | | 134=8n | | 15+4.50x=(12.50+5x) | | 3b/3-1=2 | | 3b/7-1=1 | | 5c=7c-10 | | 3b/7-1=2 | | 3b/1-1=5 | | 2x^2+20x=75 | | −13=9r/9 +8 | | 3b/2-1=5 | | ^2-10=9x | | 2b/3-1=5 | | 3b/3-1=5 | | x=4x-78 | | 3x+8x+4x=63x+63 | | a=2a-42 | | 7/6=x/6.4 | | z/2+17=12 | | 2x+3=3/ | | 2x+1+4x-91/4=180 | | L+4.1+w=61 |